Archive

Archive for the ‘Membrane’ Category

Dosen FTP Berbicara di Konferensi Internasional Euromembran

August 21st, 2015 No comments

http://prasetya.ub.ac.id/berita/Dosen-FTP-Berbicara-di-Konferensi-Internasional-Euromembran-11422-id.html

Dosen Jurusan Teknik Pertanian (PS Teknik Bioproses) Fakultas Teknologi Pertanian Universitas Brawijaya Yusuf Wibisono MSc melakukan presentasi di Konferensi Internasional Euromembran 2012 bulan lalu. Presentasi tersebut dilakukan sebagai rangkaian kunjungan ilmiahnya ke Inggris selama sembilan hari, Rabu-Kamis (19-27/9). Ia mempresentasikan papernya tentang pengaruh geometri dari spacer dalam penggunaan gelembung udara pada proses nanofiltrasi dan osmosis terbalik. Terkait dengan penggunaan gelembung udara di dalam proses membran, ketika di Universitas Oxford, ia bertemu dengan Prof. Z.F. Chui yang merupakan pakarnya. Bidang tersebut juga menjadi bidang yang diteliti Yusuf selama menempuh pendidikan doktoral di Belanda. Pada konferensi terbut, disampaikan Yusuf, 228 presentasi oral dan 550 presentasi poster dipaparkan. Diantaranya adalah membran mikrofiltrasi, ultrafiltrasi, nanofiltrasi, osmosis terbalik, osmosis maju, membran kontaktor, pembuatan dan modifikasi membrane, anorganik membran, membran karbon dan mixed matrix, hingga aplikasi teknologi membran untuk biorefinery, pemisahan gas dan uap, produksi air minum, aplikasi biomedis (ginjal buatan, biosensor, drug delivery, dialisis dll.) dan fuel cell/battery. Selama berada di Inggris, ia juga mengunjungi instalasi desalinasi yang dioperasikan oleh Thames Water di London. Instalasi ini menggunakan teknologi membran ultrafiltrasi (UF) dan osmosis terbalik (RO), dan digunakan untuk mengolah air permukaan dari Sungai Thames di London. Instalasi desalinasi Beckton ini dibangun oleh pemerintah kota London untuk menyediakan sekitar tujuh persen dari kebutuhan air minum bagi penduduk kota metropolitan London, dan digunakan sebagai cadangan untuk water security bagi London. Pada hari berikutnya Yusuf Wibisono, MSc juga mengunjungi Departemen Teknik Kimia di University of Oxford dan University of Bath, yang memiliki riset unggulan di bidang teknologi membran.[ai]

Categories: Membrane Tags:

Dosen FTP UB Mengikuti IWA di Jerman

August 21st, 2015 No comments

http://prasetya.ub.ac.id/berita/Dosen-FTP-UB-Mengikuti-IWA-di-Jerman-6094-id.html

Tanggal 3-7 Oktober 2011 Yusuf Wibisono, MSc salah satu staff pengajar Fakultas Teknologi Pertanian (FTP) Universitas Brawijaya (UB) mengikuti “6th IWA Specialist Conference on Membrane Technology for Water & Wastewater Treatment” di Eurogress Aache, Jerman. Kurang lebih 570 delegasi dari 50 negara hadir dalam konferensi internasional tersebut. Mereka terdiri dari para peneliti, perusahaan manufaktur, para ahli dalam bidang air dan membran filtrasi, serta para pengguna. Konferensi ini merupakan ajang pertemuan para membrane specialist yang merupakan bagian dari kurang lebih 10 ribu individu dan 400 perusahaan dari 130 negara yang tergabung dalam the International Water Association (IWA). Pada kesempatan ini Yusuf mempresentasikan paper yang berjudul “The effect of bubble size on the effectiveness of air/water cleaning in spiral wound membrane element”. Riset ini adalah bagian dari studi PhD di Membrane Technology Group, MESA+ Insitute of Nanotechnology, University of Twente, Belanda. Presentasi tersebut merupakan lanjutan publikasi riset setelah sebelumnya telah dipresentasikan dalam forum International Congress on Membranes and Membrane Processes (ICOM 2011) yang diselenggarakan di Amsterdam, pada tanggal 23-29 July 2011 lalu. ICOM sendiri adalah konferensi terbesar di dunia dalam bidang teknologi membran yang diadakan setiap 3 tahun sekali. ICOM 2011 di Amsterdam diikuti oleh lebih dari 1000 orang pakar di bidang teknologi dan proses membran dari seluruh dunia. Pada hari terakhir konferensi, para peserta dibawa langsung untuk mengunjungi beberapa lokasi aplikasi teknologi membran filtrasi untuk pengolahan air dan air limbah di Jerman seperti Membrane Bioreactor (MBR) plant di Nordkanal yang merupakan diantara yang terbesar di Eropa, unit Ultrafiltrasi air minum Roetgen yang terbesar di Jerman dan pusat penelitian dan pelatihan untuk sewage treatment (SIMAS). [yus/pon]

 

 

Categories: Membrane Tags:

Inorganic membrane

March 2nd, 2010 No comments

The membrane separation process can be packaged in one of four common integrated arrangements that called membrane modules: plate and frame, spiral wound, hollow fiber, capillary and tubular [1]. Both plate and frame and spiral wound modules, the flat sheet membrane is used. In the case of plate and frame modules, the membrane sheets are simply attached frames which are stacked together in such a fashion that a feed flow channel is formed between the frames. Plate and frame modules suffer from the fact that the packing density, or the amount of membrane area which can be packed into a given volume, is quite low and the manufacturing costs tend to be high. Spiral wound elements neatly address both these problems. In this modules, two membrane sheets are placed back to back separated by a permeate spacer and sealed with glue on three sides. Then, the remaining side is connected to a porous permeate tube which runs through the centre of the completed module. Finally, a feed spacer is placed adjacent to each active membrane surface and the membrane sheet is rolled around the permeate tube to create a cylindrical module. The feed spacers create feed channels by insuring that the rolled up membrane do not contact each other while the permeate spacers provide a spiral path for the permeate to reach the central tube [2].

The other common used membrane module is the tubular membrane. The membrane belonging to this group all have a tubular shape (high ratio of length to diameter). The length is ranging from one to three meter and the diameter of the membrane is ranging from half a millimeter to two centimeter. Tubular membranes with a diameter below than 0.5 mm are called hollow fiber membranes, ones with the diameter ranging from 0.5 to 5 mm are called capillary membranes, while membrane with a diameter larger than 5 mm a called tubular membrane. Tubular membranes are made by casting a membrane onto porous supporting tubes. These supporting tubes are manufactured from fiber glass, ceramics, carbon, porous plastics, stainless steel or paper and must be strong enough to withstand the feed pressures [3].

The advantages of inorganic membranes compares with organic membranes have been recognized i.e.: thermal and pH resistances, generally can withstand organic solvents, chlorine and other corrosive chemicals (see Figure 1.3). Most of inorganic membrane have multi-layered structure and consist of the separating layer and the underlying support layer(s). The available filtration area per unit per volume of support varies from 300 to 2,000 m2/m3. Each layer contains different pore size and porosity. The support, made of alumina, zirconia, titania, silica, spinel, aluminosilicate, cordierite or carbon, typically has a pore diameter of about 1 to 20 mm and a porosity of 30 to 60%. Any additional intermediate support layers have progressively smaller pore size than the underlayer of support. The intermediate support layers are typically 20-60 mm in thickness and 30-40% in porosity. The selective membrane material varies from alumina, zirconia, glass, titania, cordierite, mullite, carbon to such metals as stainless steel, palladium and silver. The overall membrane element shape comes in different types: sheet, single tube, hollow fiber and multi-channel monolith. A monolithic multi-channel honeycomb shape provides more filtration area per unit volume than either a sheet or a single tube [4].

References:

  1. R. Rautenbach and R. Albrecht, Membrane Processes, John Wiley and Sons, Ltd., Chichester, 1989, 459 pp.
  2. J. G. Pharoah, Fluid dynamics and mass transport in rotating channels with application to centrifugal membrane separation, PhD Dissertation, University of Victoria, 2002.
  3. J. Q. J. C. Verbeck, Application of air in membrane filtration, PhD Dissertation, Technische Universiteit Delft, 2005.
  4. H. P. Hsieh, Inorganic membranes for separation and reaction, Membrane Science and Technology Series 3, Elsevier Science B.V., Amsterdam, 1996, 591 pp.
Categories: Membrane Tags:

Basic principle of membrane filtration

March 2nd, 2010 No comments

Filtration is convective discriminating mass transport of liquid mixtures or gaseous dispersions (aerosols) through porous barriers, mass transport ideally being confined to the void space of the barriers. Membrane filtration, accordingly, is pressure driven barrier separation of aqueous solutions, loosely grouped into a number of process variants with reference to the size brackets of the solutes handled:  nanofiltration (NF) 0.01−0.001 μm (<10nm), ultrafiltration (UF) 0.2−0.005 μm (5−200nm) and microfiltration (MF) 10−0.1 μm (>100nm) [1]. The artificial membrane as a barrier differs to a wide variety, like polymer, ceramic, metal and liquid based materials, microporous and dense membrane based structure characteristics, or symmetric and anisotropic refers to the distribution of the pores. Membrane filtration is the surface or screening removal that differs from depth filtration [2]. Filtration operations are performed in one of two modes: tangential flow filtration (TFF) or normal flow filtration (NFF), with the latter commonly called cross-flow filtration and dead-end filtration. Viscous feed suspensions or ones that have high particulate concentrations are typically processed by cross-flow filtration to reduce the accumulation of retained material at the membrane surface, while dead-end filtration tends to be used for more dilute suspensions or smaller batch sizes [3].

References:

  1. K. W. Böddeker, Liquid separations with membranes, an introduction to barrier interference. Spriger-Verlag Berlin Heidelberg, 2008, 146 pp.
  2. M. Cheryan, Ultrafiltration Handbook, Technomic Publishing Company, Inc., Pennsylvania, 1986.
  3. M. A. Chandler, Fouling mechanisms during depth and membrane filtration of yeast cell suspensions, PhD Thesis, The Pennsylvania State University, 2006.
Categories: Membrane Tags: