Archive for the ‘Energy’ Category

Paper Dosen UB Dipresentasikan di Hannover

August 21st, 2015 No comments

Paper dosen Teknik Pertanian Universitas Brawijaya , Wahyunanto Agung Nugroho, M.Eng yang ditulis bersama Yusuf Wibisono, M.Sc (UB) dan Roni Nugraha, MSc (dosen IPB) disampaikan pada konferensi internasional Sharia Economics Conference 2013 di Hannover, Jerman, Sabtu (9/2). Paper tersebut yang berjudul “Autonomous Framework on Governing Water for Sustainable Food and Energy” mengulas tentang fenomena ancaman terhadap air bersih, dimana problem menyangkut kelangkaan, kebersihan dari kuman penyakit seperti kolera, keamanan terhadap kontaminan berbahaya seperti arsenik dan instabilitas sosial muncul akibat kesalahan dalam pengelolaan air. Padahal, air sebagai komponen terpenting dalam kehidupan manusia dan juga urat nadi kehidupan harus senantiasa terjaga kualitas dan akses terhadapnya. Air juga memberikan kontribusi sangat penting untuk pertanian, dimana sekitar 70% dari permintaan air bersih dimanfaatkan untuk pengelolaan pertanian. Air juga menjadi komponen penting dalam penyediaan energi, khususnya listrik, dan sebaliknya pengolahan air menjadi air bersih juga membutuhkan energi yang cukup besar. Konsep water-energy-food nexus menjadi pembahasan krusial yang dipresentasikan, dan paper tersebut merekomendasikan bahwa menempatkan air sebagai hak milik publik yang dikelola oleh negara adalah solusi yang bisa menjawab adanya ancaman terhadap ketersediaan air bersih. Konferensi internasional SEC2013 diselenggarakan oleh Kedutaan Besar Republik Indonesia untuk Republik Federasi Jerman di Berlin bekerjasama dengan Perhimpunan Intelektual Muslim Indonesia (PRIMA), dihadiri ratusan peserta dari berbagai negara. Puluhan paper dipresentasikan oleh peneliti, praktisi dan mahasiswa dari Inggris, Jerman, Italia, Belanda, Georgia, Malaysia dan Indonesia, di tempat penyelenggaraan konferensi di Leibniz Universitat Hannover, Jerman.

Categories: Energy Tags:

Jatropha curcas: an overview

March 2nd, 2010 No comments

Consider the food or energy crops priority, it is important to choose the suitable energy crops converting to biofuels. Corn has become the very emblem of plenty, with rich golden cobs of corn overspilling from some of the most effectively farmed arable lands on the earth. Jatropha curcas, on the other hand, is an unprepossessing and indeed toxic plant, better suited to scrubland and hedges. Yet in the world of biofuels, ugly-duckling jatropha has the potential to be, if not a hero, and a harbinger of better things to come [1].

Jatropha curcas L. is a drought-resistant shrub or tree belonging to the genus Euphorbiaceae, which is cultivated in Central and South America, South-east Asia, India and Africa [2]. J. curcas is easy to establish, grows relatively quickly and is hardy, being drought tolerant. It is not browsed, for its leaves and stems are toxic to animals, but after treatment, the seeds or seed cake could be used as an animal feed. J. curcas meals contain high true protein, high energy and low fiber [3]. Various parts of the plant are of medicinal value, its bark contains tannin, the lowers attract bees and thus the plant has a honey production potential; its wood and fruit can be used for numerous purposes including fuel. Of particular importance, the fruit of J. curcas contain viscous oil that can be used for soap making, in the cosmetics industry and as a diesel or kerosene substitute or extender. This latter use may be of importance when examining practical substitutes for fossil fuels to counter greenhouse gas accumulation. Also, like all trees, it fixes atmospheric carbon, stores it in wood and assists in the build up of soil carbon [4].

There are many positive claims on J. curcas, include that the crop: reclaims marginal soil, grows well under saline conditions, is drought tolerant and may have low water use (or high water use efficiency), has low nutrient requirements, is an energy crop, grows seeds with high oil contents, provides high oil yields, provides oil with high quality, requires low labor inputs, does not compete with food production, is tolerant or resistant to pests and diseases. These claims have been proved in traditional and low scale production. However, related to high oil yield production, is not backed up by scientific finding so far, especially in large scale production [5]. J. curcas is still a wild plant which exhibits a lot of variability in yield, oil content and oil quality. Given the booming interest which J. curcas receives nowadays, there is an urgent need for better data to guide investments. Preliminary results on the lifecycle energy balance and global warming potential of biodiesel from J. curcas are favorable, but it is important to note that the GHG balance is tightly linked to the type of land use which is removed and to the intensity of the cultivation [6]. Due to this unproved claims, various ministerial meetings that might have given the national mission on biofuel the seal of approval have been postponed in favour of higher-priority issues. Despite this, several states like India and China have enthusiastically hopped aboard the J. curcas express, providing free plants to small-scale farmers, encouraging private investment in J. curcas plantations and setting up biodiesel processing plants [7].

However, Jatropha biodiesel had comparable fuel properties with those of diesel and conforming to the latest standards for biodiesel (see Table 1.4) [8]. The choice of using J. curcas bio-diesel (i.e. methyl esters) or the J. curcas oil depends on the goal of the use (e.g. electricity or transport) and the available infrastructure. Studies show that transesterified J. curcas oil achieves better results than the use of pure J. curcas oil, straight or in a blend, in unadjusted diesel engines. Changing engine parameters shows considerable improvement of both the performance and the emission of diesel engines operating on neat J. curcas oil. More trials on the use of straight J. curcas oil in different diesel engine setups should be tested and investigated. Accurate measuring and reporting on emissions contributing to global warming, acidification, eutrophification, photochemical oxidant formation and stratospheric ozone depletion is very relevant. The long-term durability of the engines using bio-diesel as fuel requires further study as well [9].

Table 1.4. Fuel properties of jatropha oil, jatropha biodiesel and diesel [8]

Property Unit Jatropha oil Jatropha biodiesel Diesel Biodiesel standards
ASTM D 6751-02 DIN EN 14214
Density at 15 oC kgm-3 940 880 850 860-900
Viscosity at 15 oC mm2s-1 24.5 4.80 2.60 1.9-6.0 3.5-5.0
Flash point oC 225 135 68 > 130 > 120
Pour point oC 4 2 -20
Water content % 1.4 0.025 0.02 < 0.03 < 0.05
Ash content % 0.8 0.012 0.01 < 0.02 < 0.02
Carbon residue % 1.0 0.20 0.17 < 0.30
Acid value mgKOHg-1 28.0 0.40 < 0.80 < 0.50
Calorific value MJ kg-1 38.65 39.23 42


  1. Nature Editorial, Kill king corn, Nature, 2007, 449, 637.
  2. G. M. Gübitz, M. Mittelbach, and M. Trabi, Exploitation of tropical oil seed plant Jatropha curca L., Bioresources Technology, 1999, 67, 73-82.
  3. H. P. S. Makkar, A. O. Aderibigbe, and K. Becker, Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors, Food Chemistry, 1998, 62 (2), 207-215.
  4. K. Openshaw, A review of Jatropha curcas: an oil plant of unfulfilled promise, Biomass and Bioenergy, 2000, 19, 1-15.
  5. R. E. E. Jongschaap, W. J. Corre, P. S. Bindraban and W. A. Bradenburg, Claims and facts on Jatropha curcas L.: Global Jatropha curcas evaluation, breeding and propagation programme, Plant Research International B.V., Wageningen, 2007, 44 pp.
  6. W. M. J. Achten, E. Mathijs, L. Verchot, V. P. Singh, R. Aerts, and B. Muys, Jatropha biodisesel fueling sustainability?, Biofuels, Bioprod. Bioref., 2007, 1, 283-291.
  7. D. Fairless, The little shrub that could – maybe, Nature, 2007, 449, 652-655.
  8. A. K. Tiwari, A. Kumar, and H. Raheman, Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process, Biomass and Bioenergy, 2007, 31, 569-575.
Categories: Energy Tags: ,

Renewable energy

March 2nd, 2010 No comments

The world community today faces many problems, from economical instability to biodiversity extinction, from governance crisis to natural disasters. Addressing these problems calls out for a huge amount of research to be conducted to rescue human life. Scientists have to work by identifying the problems, developing future scenarios and evaluating management options.

Some researchers and policy makers prioritized several world’s biggest problems especially which ones relatively non-economic and political related problems were the unsafe water and sanitation, rapid global warming, and the limitation of known petroleum reserves. However, air pollution and climate change are major threats to living species health and also political stability. Energy insecurity and increasing prices of conventional energy sources are also greatest tendency to the fragility of politic and economic.

Air pollution and climate change problems are caused primarily by exhaust from solid, liquid, and gas combustion during energy production and use. Then, such problems can be addressed only with large-scale changes to energy sector, include how to secure undisrupted energy demand from world population, especially with the fossil-fuels production which close to peak and that peak will be followed by rapid decline. The proposed fuel and electric power sources were solar photovoltaic (PV), concentrated solar power (CSP), wind turbines, geothermal power plants, hydroelectric power plants, wave devices, tidal turbines, nuclear power plants, coal power plants fitted with carbon capture and storage (CCS) technology, and ethanol/gasoline and biodiesel as biofuels [1]. Other options like algae, butanol, hydrogen combustion, and solar hot water heaters.

The prospects for biofuels have improved tremendously over the last 2 years driven foremost by concerns for energy security and climate change and the high oil prices in combination with decreasing production costs. Global biofuel production has increased by 70% over the last 2 years reaching 1.1 mmbls/d in 2007, accounting for 1.3% of global liquids supply. The USA, Brazil and Europe account for the bulk of global biofuel production. While ethanol is the dominating biofuel product in Brazil and the USA, biodiesel is the main product within Europe accounting for more than 80% of total biofuel production [2].


  1. M. Z. Jacobson, Review of solutions to global warming, air pollution, and energy security, Energy Environ. Sci., 2009, 2, 148-173.
  2. J. Kjarstad and F. Johnsson, Resources and future supply of oil, Energy Policy, 2009, 37, 441–464.
Categories: Energy Tags: